Bilinear Matrix Eigenvalue Optimization Using Primal Relaxed Dual Method
نویسندگان
چکیده
منابع مشابه
A Primal-Relaxed Dual Global Optimization Approach1
A deterministic global optimization approach is proposed for nonconvex constrained nonlinear programming problems. Partitioning of the variables, along with the introduction of transformation variables, if necessary, convert the original problem into primal and relaxed dual subproblems that provide valid upper and lower bounds respectively on the global optimum. Theoretical properties are prese...
متن کاملRandom matrix approach for primal-dual portfolio optimization problems
In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We ...
متن کاملDual-Primal FETI Method
The FETI algorithms are numerically scalable iterative domain decomposition methods. These methods are well documented for solving equations arising from the Finite Element discretization of second or fourth order elasticity problems. The one level FETI method equipped with the Dirichlet preconditioner was shown to be numerically scalable for second order elasticity problems while the two level...
متن کاملPrimal-dual exterior point method for convex optimization
We introduce and study the primal-dual exterior point (PDEP) method for convex optimization problems. The PDEP is based on the Nonlinear Rescaling (NR) multipliers method with dynamic scaling parameters update. The NR method at each step alternates finding the unconstrained minimizer of the Lagrangian for the equivalent problem with both Lagrange multipliers and scaling parameters vectors updat...
متن کاملPrimal-Dual Lagrangian Transformation method for Convex Optimization
Received: date / Revised version: date Abstract. A class Ψ of strongly concave and smooth functions ψ : R → R with specific properties is used to transform the terms of the classical Lagrangian associated with the constraints. The transformation is scaled by a positive vector of scaling parameters, one for each constraint. Each step of the Lagrangian Transformation (LT) method alternates uncons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 2005
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.41.419